
ROP lab task
Vulnerable program is same as bof lab task, but enable the NX protection.
Note the system-wide ASLR remains disabled for our first task.

Vulnerable program:

0 WarmUp
Find the address of system, exit and "/bin/sh" in libc, you may choose one of the following
methods:

Using gdb:

adter run, use p /x &system or just p system to get the address of system and exit

use find command to find the address of exit and "/bin/sh", remeber we can use info

proc mappings or vmmap to find the address of libc.

we need to specify the range of address to search, for example:

#include <stdio.h>

void win() { // at 0x08048456

 puts("Excellent, now let's go hack the world");

}

void vuln() {

 char buf[16];

 scanf("%s", buf);

}

int main() {

 puts("Welcome back to 2023 CS315, let's have some fun!");

 vuln();

 puts("Have a good day, Bye~");

 return 0;

}

af://n0
af://n6

Using pwntools:

use ldd to find which libc is used, for example: ldd ret2libc , ldd can also tell you
base address of libc.

use pwntools to read exported symbols from libc and search the address of "/bin/sh",
for example:

note that this will find load offset of system, exit and "/bin/sh", you need to add the
base address of libc to get the real address.

1. Lab Task

1.1 Use ROP to get the shell access.

construct payload to make stack like this:

here is a reference to generete payload file in C:

from pwn import *

libc = ELF('/lib/x86_64-linux-gnu/libc.so.6')

print(f"system: {hex(libc.symbols['system'])}")

print(f"/bin/sh: {hex(next(libc.search(b'/bin/sh')))}")

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

af://n25
af://n26

in python, we can use below code to generate payload byte string

2. Submit (Assume in total 100 points)
1.The screenshot and payload of: 35 pts)

find address for system and exit (10 pts)

find address for system, exit and "/bin/sh" (17 pts)

lunch shell (25 pts)

lunch shell and exit normally (full 35 pts)

2. Compile the program yourself and disable protection mechanism you think it can
prevent ROP attack, then try to get the shell access, briefly describe the process. (20
pts)

3. Without changing code, choose three of the following protection mechanism can
prevent or mitigate ROP attack? (30 pts, 10 pts each, briefly explain why)

Canary, ASLR, NX, SafeStack(https://clang.llvm.org/docs/SafeStack.html), Pointer-
Authentication(https://llvm.org/docs/PointerAuth.html), RELRO, Other you know...

4. Enable system-wide ASLR, can you still get the shell access in ret2libc ? (10 pts)

hint: leak address of libc https://tc.gts3.org/cs6265/2021/tut/tut06-02-advrop.html

we can call puts(&puts) to leak the address of libc, use leak_address -

offset_of_puts_in_libc to get the base address of libc

If you choose this way, you may need to call a function in libc, then return to main
function and overflow again

hint: return to dl-resolve exploit

This may spend more time to implement, and requires "stack pivoit" skill used in
bonus part.

full points for exploit explaination

int main(int argc, char **argv){

 char buf[48];

 FILE *badfile;

 badfile = fopen("./payload", "w");

 /* You need to decide the addresses and

 the values for X, Y, Z. The order of the following

 three statements does not imply the order of X, Y, Z.

 Actually, we intentionally scrambled the order. */

 *(long *) &buf[X] = some address ; // "/bin/sh"

 *(long *) &buf[Y] = some address ; // system()

 *(long *) &buf[Z] = some address ; // exit()

 fwrite(buf, sizeof(buf), 1, badfile);

 fclose(badfile);

}

from pwn import *

payload = b'a' * ?? + p32(??) + p32(??) + p32(??)

with open('payload', 'wb') as f:

 f.write(payload)

af://n34
https://clang.llvm.org/docs/SafeStack.html
https://llvm.org/docs/PointerAuth.html
https://tc.gts3.org/cs6265/2021/tut/tut06-02-advrop.html

5. Challenge: there is a statically linked binary which has the same source code with
ret2libc as ret2libc_static . Can you still get the shell access? (5 pts)

you may design your own payload or use tools like https://github.com/JonathanSalwan/
ROPgadget (ROPgadget is already istalled), or another possible approch: SROP

in this time, you may need to call read(0, some_address, 0x12345678) first to avoid

chopping the payload, then use leave; ret topivot the stack to your unconstrained

payload chain.

Usually we can write the payload to .bss section, then return to read again to

read the payload to .bss section, then pivot stack to .bss section.

read 0x999 or more does not mean you need to read full 0x999 bytes, you can read
less bytes(end with \n is better) and sleep(wait) for a while, then read will reach a
timeout and return.

Happy hacking!

https://github.com/JonathanSalwan/ROPgadget

	ROP lab task
	0 WarmUp
	1. Lab Task
	1.1 Use ROP to get the shell access.

	2. Submit (Assume in total 100 points)

