
Fuzzing
and

Symbolic Execution

SUSTech CS 315 Computer Security 2023

present by frank with LOVE

Outline

• Program Analysis

• Exploiting Real World Programs

• Fuzz Testing

• Symbolic Execution

• Mixed Fuzz and Symbolic Execution (Concolic Execution)

• Summary

Program Analysis

• Bug hunters reported 1000+ bugs

• They want to find bug efficiently in countless real-

world applications

• Large companies like google

• They need to ensure the quality of the large amounts

of software they release

• They also need to ensure that the open-source

components they use are safe and stable
KCON 2023

• Can you trust programs like strings, less, file, convert, ldd, nm, objdump, readelf,

and unzip on unknown files (download from internet)?

Exploiting Real World Programs

• Real program can be complicated

• linux kernel has 66000+ files and 270000000+ lines of code

• what about your Java class project? 1000~5000 lines?

• How to find bugs and vulnerabilities

in large and complicated programs?

当你帮酒吧⽼板写了⼀个程序：

Manually constructing test cases is not enough

Fuzz Testing

• Recall vulnerable program in last lab

• Easily crashed by some long input

• How can we find bug in thousands of real world programs?

• Hire some monkeys

• “randomly”generate some inputs

asdsadaaa12a

Fuzz Testing

• Recall vulnerable program in last lab

• Easily crashed by some long input

• How can we find bug in thousands of real-world programs?

• Hire some monkeys

• “randomly”generate some inputs

• Fuzzer: hire some clever monkeys

• automatically generate and mutate inputs

AAAA.%s.AAAAA

Fuzz Testing

• AFL & AFL++ (American fuzzy lop)

• A modern fuzzing tool

• employs genetic algorithms to efficiently increase code coverage

• https://www.usenix.org/system/files/woot20-paper-fioraldi.pdf

• Best used with address sanitization (ASAN)

• Flag *all* invalid memory accesses

• Shadow memory tracking which memory areas are valid

• Finds out of bounds access and use after free bugs

• AFL+ASAN combination is gold standard of fuzzing

• we will try AFL+ASAN in our lab

American fuzzy lop's afl-fuzz running on a test program

Fuzz Testing

• AFL & AFL++ (American fuzzy lop)

• A modern fuzzing tool

• employs genetic algorithms to efficiently increase code coverage

• https://www.usenix.org/system/files/woot20-paper-fioraldi.pdf

• VUzzer，SYMcc，etc...

American fuzzy lop's afl-fuzz running on a test program
CCS Hawkeye: Towards a Desired Directed Grey-box Fuzzer
CCS Revery: from Proof-of-Concept to Exploitable (One Step towards Automatic Exploit Generation)
S&P T-Fuzz: fuzzing by program transformation
(and many many other interesting recent works)

Fuzz Testing

• Problem:

• Still hard to reach some branches

S&P‘18 T-Fuzz: fuzzing by program transformation

hard to pass this
check by fuzz

Fuzz Testing

• Problem:

• Still hard to reach some branches

S&P‘18 T-Fuzz: fuzzing by program transformation

hard to pass this
check by fuzz

hard to pass crc check
even after mutations

if fuzz is “clever” enough and applied
some genetic algorithms, it may pass
the magic number check after a while

but the fuzz is nearly impossible to pass CRC
check
CRC is a kind of hash algorithm, it often used
to check the integrity of data (e.g. a zip archive
can store CRC to check weather uncompressed
file is correct)

Fuzz Testing

• Problem:

• Still hard to reach some branches

• Another technique: symbolic execution

S&P‘18 T-Fuzz: fuzzing by program transformation

hard to pass this
check by fuzz

hard to pass crc check
even after mutations

Symbolic Execution

some path is hard to reach by randomly fuzzing
If we can extract the constraint (x==94389), we can
easily find the input to reach those path

• ①Use symbol to represent variables

• ②Simulate program execution

• ③Extract and solve constraints in execution path

• generate constraints in every path

• constraint solver: z3, cvc5

Symbolic Execution

• ①Use symbol to represent variables

• ②Simulate program execution

• ③Extract and solve constraints in execution path

• generate constraints in every path

• constraint solver: z3, cvc5

int main(){
x = read_int();
y = read_int();
z = 2 * x;
if (z == x){

if (x > y+10)
ERROR;

}
}

��������	��
����
�

Y

YN

N

return
normally

return
normally

raise
ERROR!let’s see how symbolic

execution works ->

Symbolic Execution int main(){
x = read_int();
y = read_int();
z = 2 * x;
if (z == x){

if (x > y+10)
ERROR;

}
}

Y

YN

N

return normally

return
normally

raise
ERROR!

¬(2*y == x)

• ①Use symbol to represent variables

• ②Simulate program execution

• ③Extract and solve constraints in execution path

• generate constraints in every path

• constraint solver: z3, cvc5
assume simulation engine use DFS.
For the first path, it extract constraint
and get a satisfied input

Symbolic Execution

• Use symbol to represent variables

• Simulate program execution

• Extract and solve constraints in execution path

• generate constraints in every path

• constraint solver: z3, cvc5

int main(){
x = read_int();
y = read_int();
z = 2 * x;
if (z == x){

if (x > y+10)
ERROR;

}
}

Y

N

N

return normally

return normally

raise
ERROR!

(2*y == x) ∩ ¬(x>y+10)

Y

for second one it is a combination
of two constraints

Symbolic Execution

• Use symbol to represent variables

• Simulate program execution

• Extract and solve constraints in execution path

• generate constraints in every path

• constraint solver: z3, cvc5

int main(){
x = read_int();
y = read_int();
z = 2 * x;
if (z == x){

if (x > y+10)
ERROR;

}
}

Y

N

N

return normally

return normally raise ERROR!

(2*y == x) ∩ (x>y+10)

Y

similarly, it extract simple constraints
and can get a result to reach the
path that contains bug
linear problems can be solved by
constraint solver easily

Symbolic Execution

• angr: platform-agnostic binary analysis framework

• convert input to bit vector, simulate program instructions

• KLEE: source code analysis framework

• compile from source code and make instrumentation

• http://klee.doc.ic.ac.uk/ （try it online）

• Mayhem，Triton, etc...

Shoshitaishvili, Yan, et al. "Sok:(state of) the art of war: Offensive techniques in binary
analysis." 2016 IEEE symposium on security and privacy (SP). IEEE, 2016.

angr life cycle

Cadar, Cristian, Daniel Dunbar, and Dawson R. Engler. "Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs." OSDI. Vol. 8. 2008.

Symbolic Execution

• Problem:

• state exploitation when handling many branches

• With each if statement, the number of possible

branches might double. The growth of the

problem is exponential with respect to the size

of the program.

• cost many time solving large constraint (often a

constraint will be solved many times)

Image source: http://www.icodeguru.com/vc/10book/books/book3/chap6.htm

Symbolic Execution

• Problem:

• state exploitation when handling many branches

• cost many time solving large constraint (often a constraint will be solved many times)

• Combination of two techniques: Concolic Execution

Concolic Execution

• Skip solving unnecessary constraints

• use fuzzing to accelerate

• use symbolic execution to reach deeper branches

• An example：Diller

Stephens, Nick, et al. "Driller: Augmenting fuzzing through selective symbolic execution." NDSS. 2016.

Concolic Execution

• Skip solving unnecessary constraints

• use fuzzing to accelerate

• use symbolic execution to reach deeper branches

• An example：Diller

Stephens, Nick, et al. "Driller: Augmenting fuzzing through selective symbolic execution." NDSS. 2016.

after fuzz is hard to continue, only
do symbolic execution on this node

check magic (fuzzer is hard to pass this check)

Concolic Execution

• Skip solving unnecessary constraints

• use fuzzing to accelerate

• use symbolic execution to reach deeper branches

• An example：Diller

Stephens, Nick, et al. "Driller: Augmenting fuzzing through selective symbolic execution." NDSS. 2016.

find input that can reach new path,
use this input to continue fuzzing

Concolic Execution

• Skip solving unnecessary constraints

• use fuzzing to accelerate

• use symbolic execution to reach deeper branches

• An example：Diller

Stephens, Nick, et al. "Driller: Augmenting fuzzing through selective symbolic execution." NDSS. 2016.

after fuzz for a while, do symbolic
execution on this edge and try find
input that can reach another path

Concolic Execution

• Skip solving unnecessary constraints

• use fuzzing to accelerate

• use symbolic execution to reach deeper branches

• An example：Diller

Stephens, Nick, et al. "Driller: Augmenting fuzzing through selective symbolic execution." NDSS. 2016.

symbolic execution find input
to reach a path with bug

Summary:

• Fuzz can quickly find some bug of large real word program, but fuzz is

hard to reach some complicated path

• We use symbolic execution to find more complicated bugs, but it may

produce too many unnecessary states

• We can combine fuzzing and symbolic execution

Happy exploiting!

Extra Notes:

• Fuzz target not only contains source code and binary

• browser，blockchain，compiler，kernel... everything can be tested！

• There are some other program analyzing techniques like module

checking

